Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 1074743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685286

RESUMO

Intrinsically disordered proteins are frequent targets for functional regulation through post-translational modification due to their high accessibility to modifying enzymes and the strong influence of changes in primary structure on their chemical properties. While lysine Nε-acetylation was first observed as a common modification of histone tails, proteomic data suggest that lysine acetylation is ubiquitous among both nuclear and cytosolic proteins. However, compared with our biophysical understanding of the other common post-translational modifications, mechanistic studies to document how lysine Nε-acetyl marks are placed, utilized to transduce signals, and eliminated when signals need to be turned off, have not kept pace with proteomic discoveries. Herein we report a nuclear magnetic resonance method to monitor Nε-lysine acetylation through enzymatic installation of a13C-acetyl probe on a protein substrate, followed by detection through 13C direct-detect spectroscopy. We demonstrate the ease and utility of this method using histone H3 tail acetylation as a model. The clearest advantage to this method is that it requires no exogenous tags that would otherwise add steric bulk, change the chemical properties of the modified lysine, or generally interfere with downstream biochemical processes. The non-perturbing nature of this tagging method is beneficial for application in any system where changes to local structure and chemical properties beyond those imparted by lysine modification are unacceptable, including intrinsically disordered proteins, bromodomain containing protein complexes, and lysine deacetylase enzyme assays.

2.
Biochemistry ; 58(38): 3960-3970, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31469273

RESUMO

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR), in most organisms, catalyzes the four-electron reduction of the thioester (S)-HMG-CoA to the primary alcohol (R)-mevalonate, utilizing NADPH as the hydride donor. In some organisms, including the opportunistic lung pathogen Burkholderia cenocepacia, it catalyzes the reverse reaction, utilizing NAD+ as a hydride acceptor in the oxidation of mevalonate. B. cenocepacia HMGR has been previously shown to exist as an ensemble of multiple non-additive oligomeric states, each with different levels of enzymatic activity, suggesting that the enzyme exhibits characteristics of the morpheein model of allostery. We have characterized a number of factors, including pH, substrate concentration, and enzyme concentration, that modulate the structural transitions that influence the interconversion among the multiple oligomers. We have also determined the crystal structure of B. cenocepacia HMGR in the hexameric state bound to coenzyme A and ADP. This hexameric assembly provides important clues about how the transition among oligomers might occur, and why B. cenocepacia HMGR, unique among characterized HMGRs, exhibits morpheein-like behavior.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Estrutura Quaternária de Proteína , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Coenzima A/química , Cristalografia por Raios X , Ensaios Enzimáticos , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...